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Laminar mixing induced by a twisted quadripolar Stokes flow
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Abstract

The aim of this paper is to study the laminar mixing induced by a quadripolar Stokes flow superimposed to an axial

Poiseuille flow. When the two-dimensional quadripolar flow is twisted along the direction of the Poiseuille flow, ad-

vection becomes chaotic. This three-dimensional open flow device is applied to the mixing of a dye injected continu-

ously on a fraction of the entrance section.
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1. Introduction

It is well known that chaotic mixing in two-dimen-

sional Stokes flows occurs in the annular region between

two eccentric periodically rotating circular cylinders [1–

4]. Also, the flow obtained between two confocal ellip-

ses, which circumferences are periodically rotating, leads

to an interesting chaotic mixing pattern [5]. In general,

the superposition of an axial laminar flow to one of the

above two-dimensional flows generates a three-dimen-

sional open flow mixing device. Brancher and Goichot

[6] recently pointed out that chaotic advection can occur

when a circular quadrupole plane flow is periodically

rotated around its centre. Such a flow is obtained in a

cylindrical cavity, filled with an electrical conducting

fluid, and submitted to the magnetic field created by two

coils rotating periodically and slowly around the cylin-

der. For high current frequencies and small Reynolds

and Stokes numbers, the velocity field can be calculated

analytically. The Stokes number represents the ratio

between the typical time scale of the flow and the typical

time scale of the coils oscillations. So, if this Stokes

number is very small, the quasi-steady approximation

can be used. The advection properties of this two-
* Corresponding author.

E-mail address: brancher@ensem.inpl-nancy.fr (J.P. Bran-

cher).

0017-9310/$ - see front matter � 2003 Elsevier Ltd. All rights reserv

doi:10.1016/j.ijheatmasstransfer.2003.03.003
dimensional unsteady flow have been studied in [7]. As

stated earlier, when an axial laminar Poiseuille flow is

superposed to the quadripolar flow, a steady three-

dimensional mixing device is obtained. The same

method can be used with eccentric cylinders or confocal

ellipses [8,9], but the corresponding flows called ‘‘Ec-

centric helical annular flows’’ are time periodic rather

than spatially periodic. Several papers proposed in the

literature concern three-dimensional steady flows ex-

hibiting chaotic advection: ABC flows [10]; bounded

flows in spheres [11]; more recently, bounded flows ob-

tained with orthogonal vortices [12]. The present case is

connected with steady open flows such as the twisted

pipe case [13,14] and the ‘‘partitioned pipe mixer’’ [8].

These flows are spatially periodic, the presence of vor-

tices in the orthogonal plane of the axis of the duct

playing a fundamental role in the mixing. The present

open flow is obtained first by twisting a quadripolar

two-dimensional velocity field along the z-axis. The two-
dimensional basic flow ~uuðr; hÞ which analytic expression

is briefly developed in the appendix, has been established

in [6]. This flow takes place in a cylinder of radius R0

with a typical velocity u0 and the streamlines are shown

on Fig. 1a. The three-dimensional open flow (Fig. 1b)

results from the superposition of an axial creeping flow

to the previous two-dimensional flow and can be ex-

pressed by:

~VV ¼~uuðr; h� uðzÞÞ þ W ðrÞ~eez ð1Þ
ed.
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Fig. 1. (a) Two-dimensional basic flow. (b) Three-dimensional open flow.
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where r, h, z are the cylindrical co-ordinates, W ðrÞ~eez is
the Poiseuille axial velocity in the circular cylinder:

W ¼ 2W0ð1� r2Þ, W0 is the mean velocity, ~uu is the or-

thogonal plane flow, and u is a periodic function of z.
First, we will look at the kinematic aspect and the

Lagrangian trajectories of this flow. Then, the mass and

heat transfer efficiencies of this flow are considered using

a Eulerian approach.
2. Chaotic advection

The following flow is considered (1): ~VV ¼~uuðr; h�
uðzÞÞ þ W~eez.

The typical tangent and axial flow velocities (u0 and

W0) are assumed to satisfy:

u0R0

m
� 1 and

W0R0

m
� 1 ð2Þ

u is chosen to be a linear function of z on both half

periods of the modulation (Fig. 2), with an amplitude

um ¼ 2pk, where k is the rotation number.

The wavelength L0 is such that: L0
W0

¼ 0 R0

u0

� �
.

So, the characteristic time of the change of plane

configuration seen by a particle moving on the z-axis is
Fig. 2. Periodic rotation.
the same as the typical time of the plane flow. Or when a

particle moves on the z-axis, it encounters configuration
changes at a time scale which is the flow time scale. The

chaotic behaviour of the present flow derives from the

behaviour of the two-dimensional basic flow and is

obtained by periodic rotation of the quadripole along

the z-axis [6].
This flow is obtained for an electrical conducting

liquid in arranging a pair of coils with the geometry

given by Fig. 3.

When umR0

L0
¼ 2pkR0

L0
� 1, the three-dimensional effect of

the magnetic field can be neglected, and the two-

dimensional flow on a horizontal section can be calcu-

lated using the result of [6].

This problem can be reduced to a non-linear sta-

tionary Hamiltonian two-dimensional problem. This

result mentioned by Raynal [15] can be established with

the following change of variables.

X ¼ x

Y ¼
Z y

0

W ðx; gÞdg

HðX ; Y ; zÞ ¼ wðx; y; zÞ

ð3Þ
Fig. 3. Configuration of the coils.
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Then

oX
oz

¼ oH
oY

oY
oz

¼ � oH
oX

ð4Þ

The previous system is Hamiltonian but non-autono-

mous (oH
oz 6¼ 0).

We underline that the infinitesimal area dX dY ¼
W dxdy represents the volumic flux.

The trajectories on Fig. 4 were obtained by numerical

integration of
dx
�
dt ¼ ~VV ðx

�
Þ.
3. Simple dynamic system

When the coils are far enough from the cylinder, only

the leading term of the expression given in the appendix
w
w0

¼ r2ð1� r2Þ sin 2h is meaningful. w0 is proportional to

d�2, where d is the distance from the coils to the z-axis.
For large values of d, the dimensionless form of the

flow is reduced to the following analytic expression:

~VV ¼ rot
�!½r2ðl� r2Þ sin 2ðh� uðzÞ�~eez þ 2að1� r2Þ~eez ð5Þ

where

a ¼ W0

u0
;

o

oz
uðzÞ ¼ �b

for z 2 ½0; L0=2r0� or ½L0=2r0; L0=r0�

and b ¼ 2r0um
L0

.

One can consider the formal non-dimensional 2D

flow: w ¼ f ðrÞ sin nh, with: f ð1Þ ¼ 0. For instance we

can choose: f ðrÞ ¼ ð1� r2Þr and n ¼ 1 corresponding to

a dipolar Stokes flow. If this field rotates of uðtÞ with the

period T , the trajectories are given by:
Fig. 4. Traje
dr
dt

¼ n
f ðrÞ
r

cosðnaÞ

da
dt

¼ � f 0

r
sinðnaÞ � u0ðtÞ

where f 0 ¼ df
dr, u

0 ¼ du
dt , and a ¼ h� uðtÞ.

If u is a triangular function: u0 ¼ þ2 um
T on ½0; T=2�

and u0 ¼ �2 um
T on ½T=2; T �. This system depends on the

three parameters: um, T and n.
The 3D open flow will be given by:

dr
dt

¼ n
f ðrÞ
r

cosðnaÞ

da
dt

¼ � f 0

r
sinðnaÞ � 2

um

T
bð1� r2Þ

dz
dt

¼ bð1� r2Þ

This system depends on the four parameters: b, um, T
and n.
4. Mass transfer problem

4.1. Presentation

In this section, the problem of a dye injection per-

formed on a fraction of the entrance section is consid-

ered. At the boundary of the cylinder, there are no mass

fluxes. The concentration distribution c of the colorant

in a section S, situated n wavelengths after the entrance,

is studied. The advection–diffusion of the dye concen-

tration is solved.

Results obtained for different values of the P�eeclet
number (Pe ¼ W0R0

D where D is the dye diffusivity in the

initial liquid) and for ~uu ¼ 0, u ¼ 0 and u 6¼ 0 are com-

pared.
ctories.
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Three numbers calculated on the section (r6 1,

06 h6 2p, z ¼ nL0) can be used to characterize the

mixture:

(a) The mean square concentration

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

pR2
0W0

Z
W � ðc� �ccÞ2 ds

s
ð6Þ

where

�cc ¼ 1

pR2
0W0

Z
W � cds ð7Þ

(b) The contaminated surface ratio

Se ¼ � 1

pR2
0

Z
Hðc� �ccÞds ð8Þ

where HðxÞ is the Heavyside function.

(c) The maximum value of concentration on the section

S

cm ¼ max
S

cðr; h; zf ¼ nL0Þg ð9Þ
4.2. Results

The numerical method used to solve the advection–

diffusion equation in this section is a finite volume

method using free conditions for the outlet boundary

and the quadratic scheme ‘‘Quick’’ recommended by

Hayase et al. [18] and used before by Saatdjian and

Leprevost [19] for the confocal ellipses case. The grid has
Fig. 5. Iso-concentr
240,000 elements and was tested for P�eeclet numbers up

to 500.000.

In these numerical simulation, the dye (c ¼ 1) is in-

jected on a centred disk (r6 0:25), with a velocity equal

to the local velocity of the axial flow.

The chaotic behaviour and the mixing properties of

the flow are described by the iso-concentration surfaces

(Fig. 5). The evolution of the concentration with the

position z ¼ nL0 of the surface S is given by Fig. 6. When

n increases, the concentration field is rapidly homoge-

nized and shows an exponential decay for l (a com-

pletely homogeneous field would give: �cc ¼ cm ¼ 0:118,
l ¼ 0 and Sc ¼ 1) and from n ¼ 4, the chaotic flow gives

l6 0:001.
It should be noted that the three measurements (Sc,

cm, l) give consistent results.

When the section S corresponds to n ¼ 4, the com-

petition between advection and diffusion can be de-

scribed and quantified (Fig. 7). The results for the

smooth flow strongly depend on the place of the dye

injection, Fig. 8 corresponding to a dye injection near

the centre of one of the basic flow vortices.

4.3. Conclusion

In the limit of small P�eeclet number values, the dif-

fusion phenomenon drives the mixing process. When the

P�eeclet number is high enough, the advection plays the

main role. However, if the location of the dye injection is

centred, the mixture obtained with the chaotic flow

(u 6¼ 0) is not significantly different from that obtained

with the smooth flow (u ¼ 0). In the limit of high P�eeclet
numbers, the chaotic flow is more efficient. While the
ation surfaces.
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Fig. 6. (a) The mean square concentration m versus z. (b) The contaminated surface ratio Sc versus z. (c) The maximum of concen-

tration cm versus z (for Pe ¼ 50,000).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2 3 4 5 6

Poiseuille

Smooth

Chaotic

log(Pe)

µ

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

Poiseuille

Smooth

Chaotic

log(Pe)

Sc

 

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

Poiseuille

Smooth

Chaotic

log(Pe)

cm

(a) (b)

(c)

Fig. 7. Mixing properties of a centred dye injection. (a) The mean square concentration l versus Pe. (b) The contaminated surface ratio

Sc versus Pe. (c) The maximum of concentration cm versus Pe.
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mean square concentration is always close to zero for

the chaotic flow, the smooth flow gives non-negligible

values when the diffusion does not act.

In the case of the smooth flow, the ideal location for

a dye injection is situated at the centre of the entrance

section. When the dye is injected at a different position
at the entrance, the mixing efficiency of the smooth flow

decreases. The chaotic flow’s efficiency is not affected by

this modification, and the fluid seems to forget the en-

trance initial conditions.

The chaotic mixing process studied here is very

efficient since the mixing zone covers the whole
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Fig. 8. Mixing properties of an eccentric dye injection. (a) The mean square concentration l versus Pe. (b) The contaminated surface

ratio Sc versus Pe. (c) The maximum of concentration cm versus Pe.
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cross-section, in contrast with eccentric cylinders or con-

focal ellipses processes.

Future work concerns the comparison between the

temporal evolution problem in bounded flows and the

spatial evolution behaviour in open flows. In particular,

the decay of the mean square flux concentration with z
will be carefully examined and compared with the results

given in [16] concerning the temporal decay in bounded

flows. If the results for a P�eeclet number of 50.000 (Fig.

7a) show an exponential decay, the decay-time depen-

dence on the P�eeclet number and the sensibility to the

entrance condition remains to be studied. Another

analysis will be done. It concerns the comparison be-

tween the contaminated surface ratio and the coverage

fraction of the set of intersection points of the trajectories

with the outlet section. The coverage fraction defined in

[7] is the ratio between the minimum number of boxes of

given size required to cover this set and the section.
Appendix A

We consider the problem of a flow created in a con-

ducting fluid by a high frequency magnetic field. The

fluid is placed in a cylinder and the currents flow through

two coils parallel to the axis. The frequency is sufficiently

high so that the thickness of the skin layer is negligible.

When the electromagnetic forces act in a very thin

skin layer, we can calculate the induced flow and by a

matched asymptotic expansion we can give cinematic

conditions to use on the boundary:
VpðhÞ ¼
d2el0I

2

2lp2

L2 � 2R2
0

R0

sinð2hÞ

� 2R2
0 cosð2hÞ þ L2 þ 4R2

0

½L2 � 2R2
0 cosð2hÞ�

3
ðA:1Þ

where I is the current through the coils, l0 the vacuum

permeability

L2 ¼ I20 þ
R4
0

l20

l0 is the distance of the coils to the axis de ¼
ffiffiffiffiffiffiffiffi
1

l0rx

q
, r is

the electrical conductivity, and x is the pulsation of the

currents.

The Stokes flow is calculated by using the stream

function w:

D2w ¼ 0 if r < R0

with boundary conditions at r ¼ R0 :
w ¼ 0
ow
on ¼ �Vp

�
.

The analytical solution has the following expression:

wðr; hÞ ¼ A 1

 
� r

R0

� �2
!X1

1

gnðdÞ
r
R0

� �2n

sinð2nhÞ

ðA:2Þ

where

A ¼ l0I
2

2lp3

de
R0

� �2

d
�

� 1

d

�2

ðA:3Þ
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and

gnðdÞ ¼
Z p

0

2 cosð2hÞ þ ðd2 þ 1=d2Þ þ 4

½ðd2 þ 1=d2Þ � 2 cosð2hÞ�3

� sinð2hÞ sinð2nhÞdh; with l0 ¼ d � R0 ðd > 1Þ
ðA:4Þ

These results can be found in [6] and the theory of skin

dynamics giving the boundary condition on the velocity in

[17].
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